Cubic Vertex-Transitive Graphs Admitting Automorphisms of Large Order

نویسندگان

چکیده

Abstract A connected graph of order n admitting a semiregular automorphism / k is called -multicirculant. Highly symmetric multicirculants small valency have been extensively studied, and several classification results exist for cubic vertex- arc-transitive multicirculants. In this paper, we study the broader class vertex-transitive graphs an /3 or larger that may not be semiregular. particular, show any such either -multicirculant some $$k \le 3$$ k ≤ 3 , it belongs to infinite family girth 6.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiregular Automorphisms of Cubic Vertex Transitive Graphs

It is shown that for a connected cubic graph Γ , a vertex transitive group G ≤ AutΓ contains a large semiregular subgroup. This confirms a conjecture of Cameron and Sheehan (2001).

متن کامل

Semiregular Automorphisms of Cubic Vertex-transitive Graphs

We characterise connected cubic graphs admitting a vertextransitive group of automorphisms with an abelian normal subgroup that is not semiregular. We illustrate the utility of this result by using it to prove that the order of a semiregular subgroup of maximum order in a vertex-transitive group of automorphisms of a connected cubic graph grows with the order of the graph, settling [2, Problem ...

متن کامل

Semiregular automorphisms of vertex-transitive cubic graphs

An old conjecture of Marušič, Jordan and Klin asserts that any finite vertextransitive graph has a non-trivial semiregular automorphism. Marušič and Scapellato proved this for cubic graphs. For these graphs, we make a stronger conjecture, to the effect that there is a semiregular automorphism of order tending to infinity with n. We prove that there is one of order greater than 2.

متن کامل

Cubic Vertex-Transitive Non-Cayley Graphs of Order 8p

A graph is vertex-transitive if its automorphism group acts transitively on its vertices. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this paper, the cubic vertextransitive non-Cayley graphs of order 8p are classified for each prime p. It follows from this classification that there are two sporadic and two infini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society

سال: 2023

ISSN: ['2180-4206', '0126-6705']

DOI: https://doi.org/10.1007/s40840-023-01526-x